11 research outputs found

    Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response

    Get PDF
    Dramatic rise of mutators has been found to accompany adaptation of bacteria in response to many kinds of stress. Two views on the evolutionary origin of this phenomenon emerged: the pleiotropic hypothesis positing that it is a byproduct of environmental stress or other specific stress response mechanisms and the second order selection which states that mutators hitchhike to fixation with unrelated beneficial alleles. Conventional population genetics models could not fully resolve this controversy because they are based on certain assumptions about fitness landscape. Here we address this problem using a microscopic multiscale model, which couples physically realistic molecular descriptions of proteins and their interactions with population genetics of carrier organisms without assuming any a priori fitness landscape. We found that both pleiotropy and second order selection play a crucial role at different stages of adaptation: the supply of mutators is provided through destabilization of error correction complexes or fluctuations of production levels of prototypic mismatch repair proteins (pleiotropic effects), while rise and fixation of mutators occur when there is a sufficient supply of beneficial mutations in replication-controlling genes. This general mechanism assures a robust and reliable adaptation of organisms to unforeseen challenges. This study highlights physical principles underlying physical biological mechanisms of stress response and adaptation

    Emergence of species in evolutionary “simulated annealing”

    No full text
    Which factors govern the evolution of mutation rates and emergence of species? Here, we address this question by using a first principles model of life where population dynamics of asexual organisms is coupled to molecular properties and interactions of proteins encoded in their genomes. Simulating evolution of populations, we found that fitness increases in punctuated steps via epistatic events, leading to formation of stable and functionally interacting proteins. At low mutation rates, species form populations of organisms tightly localized in sequence space, whereas at higher mutation rates, species are lost without an apparent loss of fitness. However, when mutation rate was a selectable trait, the population initially maintained high mutation rate until a high fitness level was reached, after which organisms with low mutation rates are gradually selected, with the population eventually reaching mutation rates comparable with those of modern DNA-based organisms. This study shows that the fitness landscape of a biophysically realistic system is extremely complex, with huge number of local peaks rendering adaptation dynamics to be a glass-like process. On a more practical level, our results provide a rationale to experimental observations of the effect of mutation rate on fitness of populations of asexual organisms

    Identification of Outlier Loci Responding to Anthropogenic and Natural Selection Pressure in Stream Insects Based on a Self-Organizing Map

    Get PDF
    Water quality maintenance should be considered from an ecological perspective since water is a substrate ingredient in the biogeochemical cycle and is closely linked with ecosystem functioning and services. Addressing the status of live organisms in aquatic ecosystems is a critical issue for appropriate prediction and water quality management. Recently, genetic changes in biological organisms have garnered more attention due to their in-depth expression of environmental stress on aquatic ecosystems in an integrative manner. We demonstrate that genetic diversity would adaptively respond to environmental constraints in this study. We applied a self-organizing map (SOM) to characterize complex Amplified Fragment Length Polymorphisms (AFLP) of aquatic insects in six streams in Japan with natural and anthropogenic variability. After SOM training, the loci compositions of aquatic insects effectively responded to environmental selection pressure. To measure how important the role of loci compositions was in the population division, we altered the AFLP data by flipping the existence of given loci individual by individual. Subsequently we recognized the cluster change of the individuals with altered data using the trained SOM. Based on SOM recognition of these altered data, we determined the outlier loci (over 90th percentile) that showed drastic changes in their belonging clusters (D). Subsequently environmental responsiveness (Ek’) was also calculated to address relationships with outliers in different species. Outlier loci were sensitive to slightly polluted conditions including Chl-a, NH4-N, NOX-N, PO4-P, and SS, and the food material, epilithon. Natural environmental factors such as altitude and sediment additionally showed relationships with outliers in somewhat lower levels. Poly-loci like responsiveness was detected in adapting to environmental constraints. SOM training followed by recognition shed light on developing algorithms de novo to characterize loci information without a priori knowledge of population genetics

    Identification of Outlier Loci Responding to Anthropogenic and Natural Selection Pressure in Stream Insects Based on a Self-Organizing Map

    No full text
    Water quality maintenance should be considered from an ecological perspective since water is a substrate ingredient in the biogeochemical cycle and is closely linked with ecosystem functioning and services. Addressing the status of live organisms in aquatic ecosystems is a critical issue for appropriate prediction and water quality management. Recently, genetic changes in biological organisms have garnered more attention due to their in-depth expression of environmental stress on aquatic ecosystems in an integrative manner. We demonstrate that genetic diversity would adaptively respond to environmental constraints in this study. We applied a self-organizing map (SOM) to characterize complex Amplified Fragment Length Polymorphisms (AFLP) of aquatic insects in six streams in Japan with natural and anthropogenic variability. After SOM training, the loci compositions of aquatic insects effectively responded to environmental selection pressure. To measure how important the role of loci compositions was in the population division, we altered the AFLP data by flipping the existence of given loci individual by individual. Subsequently we recognized the cluster change of the individuals with altered data using the trained SOM. Based on SOM recognition of these altered data, we determined the outlier loci (over 90th percentile) that showed drastic changes in their belonging clusters (D). Subsequently environmental responsiveness (Ek’) was also calculated to address relationships with outliers in different species. Outlier loci were sensitive to slightly polluted conditions including Chl-a, NH4-N, NOX-N, PO4-P, and SS, and the food material, epilithon. Natural environmental factors such as altitude and sediment additionally showed relationships with outliers in somewhat lower levels. Poly-loci like responsiveness was detected in adapting to environmental constraints. SOM training followed by recognition shed light on developing algorithms de novo to characterize loci information without a priori knowledge of population genetics

    Network Analysis Using Markov Chain Applied to Wildlife Habitat Selection

    No full text
    In the present study, behavioral states for habitat selection are examined using a discrete-time Markov chain (DTMC) combined with a network model with wildlife movement data. Four male boars (Sus scrofa Linnaeus) at the Bukhansan National Park in South Korea were continuously tracked with an interval of approximately 2 h to 313 days from June 2018 to May 2019. The time-series movement positions were matched with covariates of environmental factors (leaf types and water) in field conditions. Stationary probabilities were used to quantify the habitat selection preference of wild boars, including maximum probability (0.714) with the “broadleaf without water habitat” where in-degree centrality was at its maximum (0.54), but out-degree centrality was low and even (0.17) for all states. Betweenness was the maximum for the “needleleaf without water habitat”, suggesting its role as a bridging habitat between other habitats. Out-closeness scores presented the highest values in the “broadleaf without water habitat” (0.26). Similarly, the first hitting time to the habitat was shortest at the “broadleaf without water habitat” (3.64–5.16 h) and slightly longer than one day in other examined habitats, including “broadleaf with water,” “needleleaf without water,” and “no-leaf without water”. The network model using the Markov chain provided information on both local movement behavior and general resource-use patterns of wild boars in field conditions
    corecore